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naphthalene as far as comparison is valid. The m.o. 
method seems to over-emphasize the amount of charge 
between the atoms, whilst the T.F. method tends to 
exaggerate the presence of the atoms at the expense 
of the 'bond' character. Also, as always, it should 
be remembered that  the T. F. method gives poor results 
near the nuclei and at large distances, and that  to 
some extent therefore charge contours 'flatter' its 
results. The results must await experimental work on 
the actual distribution in benzene before any more 
detailed discussion can be given of the relative merits 
of the two methods employed here. 
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Particle Size Distribution from Small-Angle X-ray Scattering 

BY JACOB RISEMA~ 

International Resistance Company, Philadelphia, Pa., U . S . A .  
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A solution of the integral equation describing the intensity of X-ray scattering at low angles by a 
non-uniform collection of independently scattering spherical particles is given. The final result is in 
a form such that the particle-size distribution can be calculated by integration. The resolvent kernel, 
which solves the integral equation, is shown to be a combination of half-integral order Bessel 
functions, and therefore obtainable from known tables. Utilizing the known scattering form for a 
single-sized group of spherical particles as illustration, the expected d-function type of distribution 
is shown to result. The result obtained here can also be applied to the visible light scattering of 
dilute, solutions of polydisperse macromolecules. 

Introduct ion  

During the past several years, small-angle X-ray 
scattering methods as a means for determining particle 
size have come into greater prominence. The theory 
of Guinier (1039, 1943, 1945; see also Hosemann 
1930 a, b), which served to interpret these results, was 
based on the independent scattering of a collimated, 
monochromatic beam by a system of equally sized 
spherical particles. The ideal character represented by 
such a set of assumptions, and the fact that  one rarely 
encounters such systems within the laboratory, has 
stimulated research into such questions as the effect 
of particle shape, particle size distribution, and 
particle-particle interference (Patterson, 1939; Shull 
& Roess, 1047; Jellinek, Solomon & Fankuchen, 1946; 
Bauer, 1945; Roess, 1046; Yudowitch, 1949; L u n d &  
Vineyard, 1949). Bauer (1945) and Roess (1946) have 

derived methods for obtaining, by analytic means, 
the particle-size distribution from the corrected 
experimental data, and Jellinek, Solomon & Fankuchen 
(1946) have done likewise using an approximate 
geometric method. 

The analytical expressions obtained in both these 
cases are fairly complex, and, so far as is known, have 
not been used for this purpose. We have therefore 
derived an expression which allows us to obtain the 
particle-size distribution by numerical integration. 
The assumptions used are similar to those mentioned 
above, i.e. spherical particles and negligible inter- 
ference. To take also the latter into account would 
necessitate the introduction of a second distribution 
function, that  of the interparticle distances. Analysis 
of a set of scattering data for these two parameters 
would become extremely difficult. 
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Theory  

Under the above mentioned assumptions, the theoretical 
scattered intensity of a collection of particles having 
a size distribution such that  N(R)dR is the number of 
particles with radius in the range R to R + d R ,  is given 
by (Hosemann, 1939a, b) 

l 
~o R 3 2 

l(k)  = K o N ( R ) ~  J ~ ( k R ) d R ,  (1) 

K = Io(e2/mcg) ~ ( l+cos  ~" 20)4zdd 2 , 

where I(k) is the scattered X-ray intensity, as a function 
of the scattering angle. The incident X-ray beam is 
assumed to be collimated, or otherwise I(k) is assumed 
to be corrected for collimation error. 

The symbols, apart from the usual ones, have the 
following significance: 

10 = Initial intensity of X-ray beam 
k = 4~ sin 0/2 
d = Electron density 

20 = Scattering angle 

Jg(z) = Bessel function of ~ order of argument z 
The factor 9~/2 J~ (kR)/(kR) 8 is the scattering function 
characteristic of a spherical particle. 

Since the purpose of low-angle scattering measure- 
ments is the determination of particle size distribution, 
the problem at hand is to obtain from the theoretical 
equation (1) the particle size distribution in terms of 
the observed scattering data. We therefore rewrite 
equation (1) in the following form: 

= f W(R)s (kR)eR 
o (kR)" ' (2) 

I(k) 3 - ,  
F(k)-= ----K-k ; W(R) = N ( R ) R  3+" , 

where a term (kRy has been included in both 
numerator and denominator of the integrand to serve 
as a convergence factor. 

v will be so chosen that  the integrals encountered 
will certainly converge. Equation (2) is an integral 
equation (Fredholm first kind with infinite limit) with 
kernel J~(kR) / (kRy,  the argument of which is in 
product form. Integral equations with kernels of this 
type lend themselves to solution by the method of 
Mellin transforms, if the corresponding integrals exist 
(Titchmarsh, 1937). 

I t  should be pointed out that  in treating the above 
integral equation, the usual practice in X-ray theory 
has been followed here, namely the extension of the 
range of the variable k. k, which is an experimentally 
determined quantity, is by its definition bounded, 
--4z~/2 __ k < 4~/2. In solving the integral equation, 
k is allowed to approach infinity. Similar extension 
of range is made, for example, in the application of 
X-rays to the structure of liquids (Gingrich, 1943) 

where the integral equation in question contains the 
sine function as kernel, and where the extension of 
range permits immediate application of the Fourier 
integral theorem. Again, in performing a Hankel 
transformation, Bauer (1945) likewise allows a variable 
z = 2k cos q to become infinite, where not only k, 
but q is also limited to the range 0--½~. 

I t  is not our purpose to discuss the validity of such 
an extension of range. I t  is desired, however, to 
indicate clearly that  such extensions are currently 
made in X-ray problems, and that  from a purely 
mathematical point of view the solutions obtained 
would be open to question. The extension in range of 
k greatly simplifies the problem in allowing direct use 
of the Mellin transform methbd, similar to allowing 
the use of Fourier and Hankel transforms in the cases 
cited above. 

The Mellin transform of equation (2) is 

f(s) -= S-ldk 
0 

(kR)" 

= W(R)R-SdR [ u J.~ (u)u"-ldu 
~0 g " 

There is no difficulty here in the interchange of the 
order of integration (Bromwich, 1947, p. 503). The 
integral on the right hand side of equation (3) has 

2 2 an integran.d of the form J~(u) /u ,  and is therefore 
a particular example of the critical case of the Weber- 
Schaftheitlin integral discussed by Watson (1948). 
The integral converges for 4 > Re(R) > 2, where Re 
indicates the real part, and v in equation (3) will be 
considered to have a value appropriate for the 
condition to be fulfilled. The value of this integral is: 

f ~ ~ 1 F(½--½s+½v)F(~ +½s--½v) 
o u- ' J~  (u)u ' - ldu = 2 (l/z---)/'(1--½s+½v)F(~--½s-C-½v) 

v--3 < Re(s) < v - -1 .  (4) 

Substituting in equation (3) and solving for W(1--s) 
we obtain 

/-'(1--½s~-½v)/'(~-- ½s+½v) 
W(X--s) = 2 ( I / ~ ) ~  (5) 

v--3 < Re(s) < v - - l ;  

substituting 1--z for s, and taking the inverse Mellin 
transform the desired particle size distribution is 
obtained: 

W(R) = 

1 ~+'°°f~l_z~/'(½+½v+12z)/'(2+½v+{_Z)R_~d z 
2(I/~)2-~i L - ~ U '  ' r(½v+½z)F(2-½v-½z) 

4--v > Re(z) > 2- -v .  (6) 

Application of the Parseval formula to equation (6) 
leads to : 
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~oo 

1 {"+i°~F.(½+~+½z)F(2+½~+½z)(kR~_~dz. 
17((kR)= ~ J,,-~oo 1-'(2--½~,--½z)F(½~,+½z) " " 

The integrand has simple poles at  z = - - (2m~-~+ l ) ;  
m = 0, 1, 2, . . . ,  in the left-hand par t  of the complex 
plane. Also for ¢¢ < 0, the integral along the line 
z = o~+iy may be evaluated by means of the Cauchy 
residue theorem, since the integral along the line can 
be extended along a semi-circle of radius N + ½  with 
N ~ ~ .  On this semi-circle, the integrand will vanish 
exponentially because of the presence of a cos (arg z) 
term which is always negative. We therefore choose 

to be equal to 3 and our resolvent kernel ~Tf(kR) 
becomes 

1 t ~+~F(2~-½z)/~({-~-½z) (kR)-*dz (8) ~Tf(kR) = ~ ,~,_iooF(½--½z)l"(~-+½z) 

OO 

= 2 ~Y (--I) p I'(P-k~)(kR):P+4 
p=0 p!F(~+p)F(p- -½)  

2 
= - - - - ( / c R ) ' , F 2 ( ~  ; ~, --½; --(kR) 9) 

3 Vz 
1 > R e ( z ) > - - l ,  

where , F  2 (~" 5 , -~, -- ½, -- (kR) 2) is the generalized hyper- 
geometric function (Watson, 1948). The distribution 
function N(R) is thus 

.4  -½; 
N(R) = 3I~R 2 o 

(9) 
The infinite sum in equation (8) can be evaluated 

in terms of Bessel functions to give the distribution 
function in a form more amenable to calculation, 
which leads to 

N ( R ) -  Vz~ - f°°k3I(k)q~(kR)dlc (10) 
2 K R  3 o 

cf(x) = ~x {(2--x2)J~ (2x)--~xJ½(2x) } • 

In  this form the function cp(kR) can be readily 
evaluated from tables of Bessel functions, for different 
values of the argument, l~umerical integration, 
utilizing these values and experimental values of 
k3I(k), yields for a predetermined value of R the 
number density corresponding to this value of R. 
Values of ~(x) for x ranging from 0 to 5 are given 
in Table 1, and can be used in performing the numeri- 
cal integration. 

Table 1. Values of q~(x) 
x ~(x) 

0 0 

0 . 0 5  0 . 0 4 5 1  

0 . 1 0  - - 0 . 1 5 0 8  

0 . 1 5  - 0 . 2 2 7 2  

0 . 2 0  - -  0 . 2 7 0 1  

0 . 2 5  - 0 . 3 9 8 4  

0 . 3 0  - -  0 - 4 9 3 8  

0 . 3 5  - 0 . 6 0 3 0  

0 . 4 0  - -  0 . 7 0 3 2  

0 . 4 5  - 0 . 8 2 1 3  

0. '50 - 0- 9 4 0 0  

0 . 6 0  - -  1 . 2 0 0  

0 . 7 0  - -  1 . 4 7 2  

0 . 8 0  - -  1 . 7 4 8  

0.90 -- 2-008 
1.00 -- 2.225 

I . I 0  - -2 .374  

i. 2 --  2.426 
1.3 --  2.353 

1.4 - -2 .142 

1.5 --  1-736 
1.6 - -1 .214  

1.7 - -0 .7324 

1.8 - -0 .1741 

2 . 0  3 . 0 2 7  

2 . 5  1 0 . 1 4 2  

3 . 0  1 2 . 4 9 1  

3 . 5  4 . 2 8 0  

4 - 0  - -  1 0 " 9 5 2  

4 . 5  - -  2 0 . 2 9 9  

5"0 - - 1 2 . 6 0 7  

I(k)---  K N  J (kRo) , ( l l )  

and the particle size distribution by 

The integral in equation (12) can be conveniently 
integrated by the use of Mellin transforms, so tha t  

(Ro  3 1   +ioo 
N(R) = N \-R / ~ _. lk ~ R~°-lR-sds" (13) 

Now consider the Mellin transform of Dirac's d- 
function 

f :  5(x--y)x~-ldx = y~-l , 

so tha t  
1 t k+i~ = y~-lx-Sds. (14) 

Making use of this result we find tha t  

N ( R )  ---- N O(R--Ro), (15) 
so tha t  

Example 

To illustrate the use of this result we consider the case 
where the experimental scattering curve is tha t  due 
to a single size species of radius R 0. The experimental 
scattering curve should then be given by 

N(R)dR----0  if dR does not contain R 0 
= iV if dR contains R 0 and the range of 

dR approaches zero around R 0. 

After these calculations had been completed, the 
v~ork of Roess (1946), mentioned previously, was 
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examined to determine the relationship of his result 
to that  given here. Roess's result is given for the mass 
distribution function, which is simply related to the 
number distribution. Also using Mellin transforms, he 
obtained a form involving the differentiation of an 
integral, namely, 

M(R) -- --8R27 ~B dRd f : R l ~ I  (lc) ~F~ (½ ; -½ '  5., _k~R~)dR 

~F~(½; --½, ~; - -x  ~) ---- --~J~(x)J-~(x) . (16) 

Formally differentiating under the integral sign, we 
obtain, except for differences between the two types 
of distribution, the result shown in equation (10). 

Although X-ray scattering has been discussed here, 
it is well known that  an equation similar to equation (1) 
has been applied to the determination of size of 
spherical particles by visible light-scattering (Debye, 
1944). I t  follows that  the results obtained here should 
be applicable to dilute polydisperse solutions of 
spherical macro-molecules, in which particle-particle 
interference effects may be neglected. 
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The Crystal Structure of Potassium Trioxalatochromate (III), 
K~[Cr(C~O,)~]. 3 H~O 

BY J . N .  VAN NIEK~RK ~NI) F. R. L. SCHO~NING 

National Physical Laboratory, Council for Scientific and Industrial Research, Pretoria, South Africa 

(Redeived 12 July 1951) 

The crystal structure of Ka[Cr(C204)a]. 3H~O is monoclinic P21/c-C~h with four formula units in a 
cell of dimensions a ~ 7.71, b ---- 19.74, c ---- 10.40 A, fl = 108 ° 0'. The structure has the pseudo 
space group C2/c-C6h, which was used throughout this investigation. By evaluating the functions 
a(x, y) and a(y, z), projections of the structure on two crystallographic planes were obtained. 

The configuration of the two stereo isomeric complex ions [Cr(C204)3] is described. The three 
oxalato groups in a complex ion are planar, their inner oxygen atoms form a slightly distorted 
octahedron round the central chromium atom. It is shown that both ionic and hydrogen bonds 
link the complex ions in the structure. The errors introduced by treating the structure in the 
wrong space group are estimated not to be very serious, so that the investigation gives a clear 
picture of the general features of the structure. 

1. Preparat ion  and crysta l  data 

The material used in this investigation was prepared 
by Mr 1~. W. Burley (1950) of the Leather Industries 
Research. Institute, Grahamstown, South Mrica. 
The crystallographic data of this compound were 
investigated by Jaeger (1919). We found his data 
to be substantially correct, except that  his unit cell 
has very nearly three times the volume of our cell. 
The crystals are monoclinic holohedral and dark blue 
in colour. They usually crystallise as thick prismatic 
needles with large, well developed {031} faces. Jaeger 

calls these the {110} faces. In the literature this 
compound is usually described as Kz[Cr(C~04)3]. 3tt~0 
(Jaeger, 1919; Wyrouboff, 1900; Rammelsberg, 1854; 
Schabus, 1854). The crystals are, however, unstable. 
They lose water in a dry atmosphere, decomposing 
into a crystalline powder, whereas in a humid 
atmosphere they absorb water and become liquid. 
The exact number of water molecules associated with 
a formula unit is therefore undetermined. Although 
the crystals were coated with perspex films during 
photographic exposures, the uncertainty of their exact 
water content when an exposure was started still 


